Copied to
clipboard

G = C22.2S5order 480 = 25·3·5

1st central extension by C22 of S5

non-abelian, not soluble

Aliases: C22.2S5, C2.CSU2(𝔽5), SL2(𝔽5)⋊2C4, C2.3(A5⋊C4), C2.(C2.S5), (C2×SL2(𝔽5)).1C2, SmallGroup(480,219)

Series: ChiefDerived Lower central Upper central

C1C2C22C2×SL2(𝔽5) — C22.2S5
SL2(𝔽5) — C22.2S5
SL2(𝔽5) — C22.2S5
C1C22

10C3
6C5
15C4
15C4
20C4
10C6
10C6
10C6
6C10
6C10
6C10
5Q8
10C2×C4
15Q8
15C2×C4
30C8
10Dic3
10C2×C6
10Dic3
20Dic3
20C12
6Dic5
6Dic5
6C2×C10
5C2×Q8
15C2×C8
15C4⋊C4
5SL2(𝔽3)
10C2×Dic3
10C2×C12
10C2×Dic3
6C5⋊C8
6C2×Dic5
6C5⋊C8
15Q8⋊C4
5C2×SL2(𝔽3)
10Dic3⋊C4
6C2×C5⋊C8
5Q8⋊Dic3

Character table of C22.2S5

 class 12A2B2C34A4B4C4D56A6B6C8A8B8C8D10A10B10C12A12B12C12D
 size 11112020203030242020203030303024242420202020
ρ1111111111111111111111111    trivial
ρ211111-1-1111111-1-1-1-1111-1-1-1-1    linear of order 2
ρ31-11-11i-i-111-11-1i-ii-i1-1-1-i-iii    linear of order 4
ρ41-11-11-ii-111-11-1-ii-ii1-1-1ii-i-i    linear of order 4
ρ5444412200-11110000-1-1-1-1-1-1-1    orthogonal lifted from S5
ρ644441-2-200-11110000-1-1-11111    orthogonal lifted from S5
ρ74-4-44-20000-122-200001-110000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ844-4-4-20000-1-222000011-10000    symplectic lifted from C2.S5, Schur index 2
ρ94-4-4410000-1-1-1100001-11-333-3    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ104-4-4410000-1-1-1100001-113-3-33    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ114-44-412i-2i00-1-11-10000-111ii-i-i    complex lifted from A5⋊C4
ρ124-44-41-2i2i00-1-11-10000-111-i-iii    complex lifted from A5⋊C4
ρ1344-4-410000-11-1-1000011-1-3--3-3--3    complex lifted from C2.S5
ρ1444-4-410000-11-1-1000011-1--3-3--3-3    complex lifted from C2.S5
ρ155555-1-1-1110-1-1-11111000-1-1-1-1    orthogonal lifted from S5
ρ165555-111110-1-1-1-1-1-1-10001111    orthogonal lifted from S5
ρ175-55-5-1-ii-1101-11i-ii-i000ii-i-i    complex lifted from A5⋊C4
ρ185-55-5-1i-i-1101-11-ii-ii000-i-iii    complex lifted from A5⋊C4
ρ196666000-2-2100000001110000    orthogonal lifted from S5
ρ206-66-60002-2100000001-1-10000    orthogonal lifted from A5⋊C4
ρ216-6-660000010002-2-22-11-10000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ226-6-66000001000-222-2-11-10000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ2366-6-6000001000--2--2-2-2-1-110000    complex lifted from C2.S5
ρ2466-6-6000001000-2-2--2--2-1-110000    complex lifted from C2.S5

Smallest permutation representation of C22.2S5
On 96 points
Generators in S96
(1 92 29 7 86 35)(2 78 17 8 84 23)(3 75 44 9 81 38)(4 87 55 10 93 49)(5 58 16 11 52 22)(6 37 26 12 43 32)(13 28 57 19 34 51)(14 83 66 20 77 72)(15 39 63 21 45 69)(18 46 31 24 40 25)(27 60 62 33 54 68)(30 89 61 36 95 67)(41 91 82 47 85 76)(42 88 64 48 94 70)(50 79 96 56 73 90)(53 74 65 59 80 71)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,92,29,7,86,35)(2,78,17,8,84,23)(3,75,44,9,81,38)(4,87,55,10,93,49)(5,58,16,11,52,22)(6,37,26,12,43,32)(13,28,57,19,34,51)(14,83,66,20,77,72)(15,39,63,21,45,69)(18,46,31,24,40,25)(27,60,62,33,54,68)(30,89,61,36,95,67)(41,91,82,47,85,76)(42,88,64,48,94,70)(50,79,96,56,73,90)(53,74,65,59,80,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,92,29,7,86,35)(2,78,17,8,84,23)(3,75,44,9,81,38)(4,87,55,10,93,49)(5,58,16,11,52,22)(6,37,26,12,43,32)(13,28,57,19,34,51)(14,83,66,20,77,72)(15,39,63,21,45,69)(18,46,31,24,40,25)(27,60,62,33,54,68)(30,89,61,36,95,67)(41,91,82,47,85,76)(42,88,64,48,94,70)(50,79,96,56,73,90)(53,74,65,59,80,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,92,29,7,86,35),(2,78,17,8,84,23),(3,75,44,9,81,38),(4,87,55,10,93,49),(5,58,16,11,52,22),(6,37,26,12,43,32),(13,28,57,19,34,51),(14,83,66,20,77,72),(15,39,63,21,45,69),(18,46,31,24,40,25),(27,60,62,33,54,68),(30,89,61,36,95,67),(41,91,82,47,85,76),(42,88,64,48,94,70),(50,79,96,56,73,90),(53,74,65,59,80,71)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)]])

Matrix representation of C22.2S5 in GL8(𝔽241)

0024000000
2400000000
0240000000
0002400000
0000883449224
00002222161194
000012814450181
000019419612182
,
1771771771770000
006400000
000640000
064000000
000010121692110
000088118189119
0000576322587
000020918017169

G:=sub<GL(8,GF(241))| [0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,88,22,128,194,0,0,0,0,34,22,144,196,0,0,0,0,49,161,50,121,0,0,0,0,224,194,181,82],[177,0,0,0,0,0,0,0,177,0,0,64,0,0,0,0,177,64,0,0,0,0,0,0,177,0,64,0,0,0,0,0,0,0,0,0,101,88,57,209,0,0,0,0,216,118,63,180,0,0,0,0,92,189,225,171,0,0,0,0,110,119,87,69] >;

C22.2S5 in GAP, Magma, Sage, TeX

C_2^2._2S_5
% in TeX

G:=Group("C2^2.2S5");
// GroupNames label

G:=SmallGroup(480,219);
// by ID

G=gap.SmallGroup(480,219);
# by ID

Export

Subgroup lattice of C22.2S5 in TeX
Character table of C22.2S5 in TeX

׿
×
𝔽